Search results for "B-50 GAP-43"

showing 1 items of 1 documents

Role of calcineurin in Ca2+-induced release of catecholamines and neuropeptides

1998

Neurotransmission requires rapid docking, fusion, and recycling of neurotransmitter vesicles. Several of the proteins involved in this complex Ca2+-regulated mechanism have been identified as substrates for protein kinases and phosphatases, e.g., the synapsins, synaptotagmin, rabphilin3A, synaptobrevin, munc18, MARCKS, dynamin I, and B-50/GAP-43. So far most attention has focused on the role of kinases in the release processes, but recent evidence indicates that phosphatases may be as important. Therefore, we investigated the role of the Ca2+/calmodulin-dependent protein phosphatase calcineurin in exocytosis and subsequent vesicle recycling. Calcineurin-neutralizing antibodies, which blocke…

MaleSynaptobrevinCYCLOSPORINE-APhosphataseCalcineurin InhibitorsB-50 GAP-43Biologydynamin IBiochemistryBRAIN NERVE-TERMINALSExocytosisSynaptotagmin 1SincalidephosphataseGeneeskundeCellular and Molecular NeuroscienceNorepinephrineBacterial ProteinsPERMEATED SYNAPTOSOMESAnimalsratNEUROTRANSMITTER RELEASEMARCKSEnzyme InhibitorsRats WistarPROTEIN-KINASE-CDynaminCalcineurinTRANSMITTER RELEASEDYNAMIN-ISynapsinPhosphoric Monoester HydrolasesRatsINDUCED NORADRENALINE RELEASECalcineurinBiochemistryImmunoglobulin GStreptolysinsCalciumexocytosisCALMODULIN-BINDINGSynaptosomes
researchProduct